A NEW PROOF OF THE GITIK-SHELAH THEOREM

BY

ANASTASIS KAMBURELIS

Mathematical Institute, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

ABSTRACT

A purely combinatorial proof of a recent result of M. Gitik and S. Shelah is presented.

In this note we present a purely combinatorial proof of a recent result of M. Gitik and S. Shelah. For a cardinal λ , let 2^{λ} be the usual product space. Denote by \mathbb{B}_{λ} the σ -field generated by the basic open sets in 2^{λ} . Let \mathbb{K}_{λ} and \mathbb{L}_{λ} denote, respectively, the ideals of meagre and measure zero sets in 2^{λ} .

THEOREM (Gitik, Shelah [GS]). Let I be a nonprincipal, κ -complete ideal on a regular, uncountable cardinal κ . If for some $\lambda \geq \aleph_0$ the Boolean algebra $P(\kappa)/I$ is isomorphic either to $\mathbb{B}_{\lambda}/\mathbb{K}_{\lambda}$ or to $\mathbb{B}_{\lambda}/\mathbb{L}_{\lambda}$, then $\lambda \geq \kappa^+$.

Our formulation is slightly different from that of [GS] (compare Corollary 1.4 and Theorem 2.6 in [GS]). The proof in [GS] uses metamathematical techniques like forcing and generic ultrapowers. I have received a letter from Professor D. H. Fremlin with another combinatorial proof of the Gitik-Shelah theorem.

§0. Preliminaries

We fix the notation and recall some definitions. **Ord** is the class of all ordinal numbers in the sense of von Neumann.

Let I be an ideal on cardinal κ . We consider only nontrivial ideals, i.e. $\emptyset \in I$ and $\kappa \notin I$. I is nonprincipal iff $[\kappa]^{<\omega} \subseteq I$; I is uniform iff $[\kappa]^{<\kappa} \subseteq I$; I is κ -complete iff $\bigcup \alpha \in I$ for each $\alpha \subseteq I$ such that $|\alpha| < \kappa$; I is a σ -ideal iff I is κ_1 -complete. We let $I^+ = \{A \subseteq X : A \notin I\}$ and $I^c = \{A \subseteq X : X \setminus A \in I\}$.

Received March 22, 1990

Let X be an arbitrary set. For $D \subseteq \kappa \times X$, $\alpha < \kappa$ and $x \in X$ we let $D_{\alpha} = \{x \in X : \langle \alpha, x \rangle \in D\}$ and $D^{x} = \{\alpha < \kappa : \langle \alpha, x \rangle \in D\}$.

We sometimes abuse the above notation by treating a κ -sequence $\langle D_{\alpha} : \alpha < \kappa \rangle$ of subsets of X as a single $D \subseteq \kappa \times X$.

Assume that I is an ideal on κ and J is an ideal on X. We define two ideals on $\kappa \times X$. For $D \subseteq \kappa \times X$:

$$D \in I \times J$$
 iff $\{\alpha < \kappa : D_{\alpha} \in J^{+}\} \in I$,
 $D \in (J \times I)^{T}$ iff $\{x \in X : D^{x} \in I^{+}\} \in J$.

For $S \subseteq \lambda$ we have a continuous projection $\pi_S : 2^{\lambda} \to 2^S$ given by $\pi_S(x) = x \mid S$. If $B \in \mathbb{B}_{\lambda}$ then there exist a countable set $S \subseteq \lambda$ and a Borel set $A \subseteq 2^S$ such that $B = \pi_S^{-1} [A]$. We call any such S a support of S. Similarly, if S is S is S measurable, then there exist a countable set $S \subseteq \lambda$ and a Borel function S: S is S such that S is a support of S. We call S a support of S is S.

We shall say that an ideal J on 2^{λ} has base in \mathbb{B}_{λ} if for each $A \in J$ there is some $B \in J \cap \mathbb{B}_{\lambda}$ such that $A \subseteq B$.

 \mathbb{K}_{λ} and \mathbb{L}_{λ} are the σ -ideals with base in \mathbb{B}_{λ} .

For a σ -ideal with base in \mathbb{B}_{λ} and $S \subseteq \lambda$ we let

$$J_S = \{A \subseteq 2^S : \text{ for some } B \in \mathbb{B}_S, A \subseteq B \text{ and } \pi_S^{-1}[B] \in J\}.$$

Then J_S is a σ -ideal on 2^S with base in \mathbb{B}_S .

By ID(κ , I) we denote the assertion that κ is a regular, uncountable cardinal and that I is a nonprincipal, κ -complete ideal on κ . We define three properties:

$$OMC(\kappa, I)$$
 iff $ID(\kappa, I)$ and $P(\kappa)/I$ satisfies the c.c.c.

BTC(
$$\kappa, I$$
) iff ID(κ, I) and for some λ , $P(\kappa)/I \cong \mathbb{B}_{\lambda}/\mathbb{K}_{\lambda}$.

$$RVM(\kappa, I)$$
 iff $ID(\kappa, I)$ and for some λ , $P(\kappa)/I \cong \mathbb{B}_{\lambda}/\mathbb{L}_{\lambda}$.

Let us briefly sketch the main idea of the proof of Theorem. Let I be an ideal satisfying the assumptions of Theorem. We look for ideals J satisfying the following $Product\ Property$: $I \times J \subseteq (J \times I)^T$. In §1 we show that this property holds for the ideals of meagre and measure zero sets. In §2 we prove that if J satisfies the Product Property then there are no large, J-almost disjoint families of functions. On the other hand, in §3 we produce some large ADF from the assumption that $\lambda \leq \kappa$.

§1. Product property for category and measure

LEMMA 1. The following are equivalent:

- (1) $I \times J \subseteq (J \times I)^T$.
- (2) $\{\emptyset\} \times J \subseteq (J \times I)^T$.
- (3) If $Y \in J^+$ and $\{C_x : x \in Y\} \subseteq I^+$ then there exists $Z \subseteq Y$ such that $Z \in J^+$ and $\bigcap_{x \in Z} C_x \neq \emptyset$.

Proof. An easy verification.

PROPOSITION 2. Assume BTC(κ , I). Then $I \times \mathbb{K}_{\omega} \subseteq (\mathbb{K}_{\omega} \times I)^T$.

PROOF. Assume that for some λ , $P(\kappa)/I \cong \mathbb{B}_{\lambda}/\mathbb{K}_{\lambda}$.

It is easy to observe that it suffices to prove the following:

If $G \subseteq \kappa \times 2^{\omega}$ is such that for $\alpha < \kappa$, G_{α} is dense open in 2^{ω} , then the set $\{x \in 2^{\omega} : G^x \in I^c\}$ is a dense \mathcal{C}_{δ} in 2^{ω} .

Let $\{I_n: n < \omega\}$ be an enumeration of all nonempty, basic open sets in 2^{ω} . Set $K_n = \{\alpha < \kappa: I_n \subseteq G_{\alpha}\}$. Then $G = \bigcup_{n < \omega} K_n \times I_n$. For $x \in 2^{\omega}$ we have $G^x = \bigcup \{K_n: n < \omega \text{ and } x \in I_n\}$.

Consider the set $\{K_n/I: n < \omega\} \subseteq P(\kappa)/I$. As is known, each countably generated subalgebra of $\mathbb{B}_{\lambda}/\mathbb{K}_{\lambda}$ has a countable dense set. Hence, there exists a family $\{A_m: m < \omega\} \subseteq I^+$ such that for all $x \in 2^{\omega}$ we have: $\sum \{K_n/I: n < \omega \text{ and } x \in I_n\} = 1$ iff for all $m < \omega$ there exists $n < \omega$ such that $x \in I_n$ and $K_n \cap A_m \in I^+$.

For $m < \omega$ let $H_m = \bigcup \{I_n : n < \omega \text{ and } K_n \cap A_m \in I^+\}$. Then

$$\{x \in 2^{\omega} : G^x \in I^c\} = \bigcap_{m < \omega} H_m.$$

So we complete the proof if we show that each H_m is dense in 2^{ω} . Fix $m < \omega$ and let J be an arbitrary, nonempty, open set. We shall show that $J \cap H_m \neq \emptyset$. As each G_{α} is dense open, we have

$$\kappa = \{ \alpha < \kappa : G_{\alpha} \cap J \neq \emptyset \}$$

$$= \bigcup_{n < \omega} \{ \alpha < \kappa : I_n \subseteq G_{\alpha} \cap J \}$$

$$= \bigcup \{ K_n : n < \omega \text{ and } I_n \subseteq J \}.$$

But $A_m \in I^+$. Hence, for some $n < \omega$ with $I_n \subseteq J$ we must have $K_n \cap A_m \in I^+$. So $I_n \subseteq J \cap H_m$ and $J \cap H_m \neq \emptyset$ as required.

Proposition 3. (Kunen) Assume RVM(κ , I). Then $I \times \mathbb{L}_{\omega} \subseteq (\mathbb{L}_{\omega} \times I)^{T}$.

PROOF. By the assumption there exists a nontrivial, κ -additive measure $m: P(\kappa) \to [0,1]$ such that $I = \{A \subseteq \kappa : m(A) = 0\}$. Let λ be the Lebesgue measure on 2^{ω} and assume that $D \subseteq \kappa \times 2^{\omega}$ is such that for $\alpha < \kappa$, $\lambda(D_{\alpha}) = 0$. For $m < \omega$ we can find a set $G(m) \subseteq \kappa \times 2^{\omega}$ such that for $\alpha < \kappa$, $G(m)_{\alpha}$ is an open set of Lebesgue measure $\leq 1/(m+1)$ and $D_{\alpha} \subseteq G(m)_{\alpha}$. Let $H = \bigcap_{m < \omega} G(m)$. Denote by $m \times \lambda$ the product measure defined on the σ -field $P(\kappa) \times \mathbb{B}_{\omega}$.

First observe that $H \in P(\kappa) \times \mathbb{B}_{\omega}$. For let $\{I_n : n < \omega\}$ be an enumeration of all basic open sets in 2^{ω} . For $m, n < \omega$ let $K_n^m = \{\alpha < \kappa : I_n \subseteq G(m)_{\alpha}\}$. Then

$$H = \bigcap_{m < \omega} \bigcup_{n < \omega} K_n^m \times I_n.$$

By the Fubini Theorem $(m \times \lambda)(H) = 0$ and $\lambda(\{x \in 2^{\omega} : m(H^x) > 0\}) = 0$. Hence, $\{x \in 2^{\omega} : D^x \in I^+\} \in \mathbb{L}_{\omega}$ as required.

The next two lemmas allow us to extend Propositions 2 and 3 to the spaces 2^{μ} for infinite $\mu < \kappa$.

LEMMA 4. Assume QMC(κ , I) and $\omega \leq \mu < \kappa$. Let $\{S_{\alpha} : \alpha < \kappa\} \subseteq [\mu]^{\omega}$. Then there exists $S \in [\mu]^{\omega}$ such that $\{\alpha < \kappa : S_{\alpha} \subseteq S\} \in I^{c}$.

PROOF. Enumerate each S_{α} as $\{\beta_n^{\alpha} : n < \omega\}$. For each $n < \omega$ the function $\alpha \mapsto \beta_n^{\alpha}$ splits κ into $\leq \mu$ parts. By the c.c.c. and κ -completeness of I, there is $T_n \in [\mu]^{\omega}$ such that $\{\alpha < \kappa : \beta_n^{\alpha} \in T_n\} \in I^c$. Now set $S = \bigcup_{n < \omega} T_n$.

LEMMA 5. Assume QMC(κ , I) and let J be a σ -ideal on 2^{κ} with base in \mathbb{B}_{κ} . If for each countable $S \subseteq \kappa$, $I \times J_S \subseteq (J_S \times I)^T$ then, for each infinite $\mu < \kappa$, $I \times J_{\mu} \subseteq (J_{\mu} \times I)^T$.

PROOF. Routine. Use the fact that each set from \mathbb{B}_{μ} has a countable support and apply Lemma 4.

COROLLARY 6. (1) Assume BTC(κ , I) and $\omega \leq \mu < \kappa$. Then $I \times \mathbb{K}_{\mu} \subseteq (\mathbb{K}_{\mu} \times I)^{T}$. (2) Assume RVM(κ , I) and $\omega \leq \mu < \kappa$. Then $I \times \mathbb{L}_{\mu} \subseteq (\mathbb{L}_{\mu} \times I)^{T}$.

We cannot have $\mu = \kappa$ in Corollary 6 because of the following counterexample: Let $\{X_{\alpha} : \alpha < \kappa\}$ be any partition of κ such that $|X_{\alpha}| = \aleph_0$ for $\alpha < \kappa$. For $\alpha < \kappa$ we let

$$B_{\alpha} = \{ z \in 2^{\kappa} : (\forall \beta \in X_{\alpha})(z(\beta) = 0) \}.$$

Then $B_{\alpha} \in \mathbb{B}_{\kappa}$ and B_{α} is closed, nowhere dense and of measure zero. Let $H = \{z \in 2^{\kappa} : (\exists \alpha < \kappa)(\forall \beta > \alpha)(z(\beta) = 0)\}$. Observe that if $z \in H$ then $z \in B_{\alpha}$ for all but $< \kappa$ α 's. By the uniformity of I,

$$H \subseteq \{z \in 2^{\kappa} : B^z \in I^c\} \subseteq \{z \in 2^{\kappa} : B^z \in I^+\}.$$

On the other hand, if $S \in [\kappa]^{\omega}$, $D \subseteq 2^{S}$ and $D \neq 2^{S}$ then H is not contained in $\{z \in 2^{\kappa} : z \mid S \in D\}$. This implies that $H \notin \mathbb{K}_{\kappa} \cup \mathbb{L}_{\kappa}$.

§2. Product property implies that there are no large ADF

To the end of this paragraph we assume that I is an ideal on κ and J is an ideal on some set X.

LEMMA 7. Assume that I is uniform and $I \times J \subseteq (J \times I)^T$. Let $\{z_{\beta} : \beta < \kappa\} \subseteq X$. If $A \subseteq \kappa$ and $\{z_{\beta} : \beta \in A\} \in J^+$, then for some $\alpha < \kappa$, $\{z_{\beta} : \beta \in A \cap \alpha\} \in J^+$.

PROOF. Assume otherwise. For $\alpha < \kappa$ let $D_{\alpha} = \{z_{\beta} : \beta \in A \cap \alpha\}$. Then $D \in I \times J$. Since D_{α} 's are increasing, for $\beta \in A$, z_{β} belongs to almost all D_{α} 's. Hence $\{z_{\beta} : \beta \in A\} \subseteq \{x \in X : |\kappa \setminus D^{x}| < \kappa\}$. By uniformity, $\{x \in X : |\kappa \setminus D^{x}| < \kappa\} \subseteq \{x \in X : D^{x} \in I^{+}\}$. But this contradicts that $D \in (J \times I)^{T}$.

LEMMA 8. Assume that $|X| < \kappa$ and that I is κ -complete. Then $(J \times I)^T \subseteq I \times J$.

PROOF. Assume that $D \in (\{\emptyset\} \times I)^T$. Hence, for every $x \in X$, $D^x \in I$. As $|X| < \kappa$ and I is κ -complete, we have $\bigcup_{x \in X} D^x \in I$. But obviously

$$\{\alpha < \kappa : D_{\alpha} \in J^{+}\} \subseteq \{\alpha < \kappa : D_{\alpha} \neq \emptyset\} \subseteq \bigcup_{x \in X} D^{x}.$$

Hence $D \in I \times J$.

DEFINITION. A family \mathfrak{F} of functions on X is said to be J-almost disjoint iff for each distinct $T, T' \in \mathfrak{F}$, $\{x \in X : T(x) = T'(x)\} \in J$.

If $\mathfrak{F} \subseteq {}^{\mathcal{X}}$ Ord then we shall say that \mathfrak{F} is (J, κ, κ) -concentrated iff there exists a $Y \in J^+$, $|Y| \le \kappa$ such that $\{x \in Y : T(x) < \kappa\} \in J^+$ for all $T \in \mathfrak{F}$. This may be viewed as a generalization of $\mathfrak{F} \subseteq {}^{\kappa}\kappa$.

PROPOSITION 9. Assume that I is nonprincipal, κ -complete and $I \times J \subseteq (J \times I)^T$. If $\mathfrak{F} \subseteq {}^X$ Ord is J-almost disjoint and (J, κ, κ) -concentrated family, then $|\mathfrak{F}| \leq \kappa$.

PROOF. Assume to the contrary that $|\mathfrak{F}| > \kappa$. Let $Y \in J^+$ be such that $|Y| \le \kappa$ and for all $T \in \mathfrak{F}$, $\{x \in Y : T(x) < \kappa\} \in J^+$. By the assumptions on I, κ is a reg-

ular cardinal. Enumerating Y, using Lemma 7 and shrinking $\mathfrak F$ if necessary, we see that we may assume without loss of generality that $|Y| < \kappa$.

For $T \in \mathfrak{F}$, $\kappa \cap T[Y]$ is bounded in κ . Shrinking \mathfrak{F} again, we may pick $\eta < \kappa$ such that for $T \in \mathfrak{F}$, $\kappa \cap T[Y] \subseteq \eta$, hence

$$\{x \in Y : T(x) < \eta\} = \{x \in Y : T(x) < \kappa\} \in J^+.$$

From now on we fix distinct $T_{\alpha} \in \mathfrak{F}$, $\alpha < \kappa$.

For $\alpha < \kappa$ we let $D_{\alpha} = \{x \in Y : T_{\alpha}(x) < \eta\}$. Then $D \notin I \times J$. Using Lemma 8 for the ideal $\{Z \subseteq Y : Z \in J\}$, we obtain that

$$W = \{ x \in Y : \{ \alpha < \kappa : T_{\alpha}(x) < \eta \} \in I^{+} \} \in J^{+}.$$

The κ -completeness of I allows us to define a function $h: W \to \eta$ such that for $x \in W$, $\{\alpha < \kappa : T_{\alpha}(x) = h(x)\} \in I^{+}$.

As I is nonprincipal we can apply Lemma 1.3 twice and obtain $Z \subseteq W$, $Z \in J^+$ such that $|\bigcap_{x \in Z} \{\alpha < \kappa : T_{\alpha}(x) = h(x)\}| \ge 2$. This gives us two distinct $\alpha, \alpha' < \kappa$ such that $Z \subseteq \{x \in X : T_{\alpha}(x) = T_{\alpha'}(x)\}$. But this gives a contradiction, since \mathfrak{F} is J-almost disjoint.

§3. $\lambda \leq \kappa$ implies the existence of large ADF

To the end of this section we assume that J is a σ -ideal on 2^{λ} with base in \mathbb{B}_{λ} . The next lemma is essentially a theorem of Sikorski on inducing σ -homomorphisms applied to our case.

LEMMA 10. Assume that I is a σ -ideal on κ and $\psi: \mathbb{B}_{\lambda}/J \to P(\kappa)/I$ is an isomorphism. Then:

- (1) There exists a function $R: \kappa \to 2^{\lambda}$ such that ψ is induced by R, i.e. for each $B \in \mathbb{B}_{\lambda}$, $\psi(B/J) = R^{-1}$ [B]/I.
- (2) If $A \in I^+$ then $\{R(\beta): \beta \in A\} \in J^+$; in particular, for each $S \subseteq \lambda$, $\{R(\beta)|S: \beta \in A\} \in J_S^+$.
- (3) If $f: \kappa \to 2^{\omega}$, then there exists a \mathbb{B}_{λ} -measurable function $T_f: 2^{\lambda} \to 2^{\omega}$ such that $\{\beta < \kappa: T_f(R(\beta)) = f(\beta)\} \in I^c$.
- (4) If $f, g: \kappa \to 2^{\omega}$ and $\{\beta < \kappa : f(\beta) = g(\beta)\} \in I$ then

$$\{x \in 2^{\lambda} : T_f(x) = T_g(x)\} \in J.$$

PROOF. We only sketch the proof, leaving some details to the reader. First observe that if $\lambda < \omega$, then $J = \{\emptyset\}$ and the Lemma follows by easy cardinal arguments. So let us assume that $\lambda \ge \omega$.

(1) For $\delta < \lambda$ pick sets $E_{\delta} \subseteq \kappa$ such that $\psi(\{x \in 2^{\lambda} : x(\delta) = 1\}/J) = E_{\delta}/I$. Define $R : \kappa \to 2^{\lambda}$ as follows:

$$R(\beta)(\delta) = 1$$
 iff $\beta \in E_{\delta}$, for $\beta < \kappa$ and $\delta < \lambda$.

Using the σ -completeness of ideals, it is easy to prove by induction on the complexity of B that ψ is induced by R.

- (2) This follows from (1) and the definition of J_s .
- (3) For $n < \omega$ pick sets $B_n \in \mathbb{B}_{\lambda}$ such that

$$\psi(B_n/J) = \{\beta < \kappa : f(\beta)(n) = 1\}/I.$$

Define $T_f: 2^{\lambda} \to 2^{\omega}$ by the formula: $T_f(x)(n) = 1$ iff $x \in B_n$, for $x \in 2^{\lambda}$ and $n < \omega$. (4) We have $\{x \in 2^{\lambda}: T_f(x) = T_g(x)\} \in \mathbb{B}_{\lambda}$. Now use (1) and (3).

PROPOSITION 11. Assume that I is a uniform σ -ideal on $\kappa \leq 2^{\aleph_0}$ and $P(\kappa)/I \cong \mathbb{B}_{\lambda}/J$ for some $\lambda \leq \kappa$. Then there exist $\mu < \kappa$ ($\mu \leq \lambda$) and $\mathfrak{F} \subseteq 2^{\mu}$ Ord such that $|\mathfrak{F}| > \kappa$ and \mathfrak{F} is a J_{μ} -almost disjoint, (J_{μ}, κ, κ)-concentrated family.

PROOF. As $\kappa \leq 2^{\aleph_0}$ we fix $E \subseteq 2^{\omega}$ so that $|E| = \kappa$.

It is well known that there exists a family $G \subseteq {}^{\kappa}E$ which is $[\kappa]^{<\kappa}$ -almost disjoint and such that $|G| > \kappa$.

Fix an isomorphism $\psi: \mathbb{B}_{\lambda}/J \to P(\kappa)/I$ and let $R: \kappa \to 2^{\lambda}$ be a function given by Lemma 10(1). Using Lemma 10(3), for each $f \in \mathcal{G}$ we pick a \mathbb{B}_{λ} -measurable function $T_f: 2^{\lambda} \to 2^{\omega}$ such that $\{\beta < \kappa: T_f(R(\beta)) = f(\beta)\} \in I^c$. We also pick a countable $S_f \subseteq \lambda$ such that S_f is a support of T_f . By the assumption on I, the cofinality of κ is uncountable, so each S_f is bounded in κ . Hence, by shrinking \mathcal{G} , we can find $\mu < \kappa$ ($\mu \le \lambda$) such that $S_f \subseteq \mu$ for each $f \in \mathcal{G}$. Now pick functions $T_f: 2^{\mu} \to 2^{\omega}$ such that $T_f(x) = T_f(x|\mu)$ for $x \in 2^{\lambda}$. Set $\mathfrak{F} = \{T_f: f \in \mathcal{G}\}$.

We claim that $\mathfrak F$ has the required properties. By the uniformity of I and Lemma 10(4), we see that $\mathfrak F$ is J_{μ} -almost disjoint and $|\mathfrak F| > \kappa$. Consider $Y = \{R(\beta) | \mu : \beta < \kappa\} \subseteq 2^{\mu}$. Then $Y \in J_{\mu}^+$ by Lemma 10(2) and for $f \in \mathfrak G$, $\{R(\beta) | \mu : \beta < \kappa \text{ and } T_f(R(\beta) | \mu) \in E\} \in J_{\mu}^+$.

Now we may treat 2^{ω} as an ordinal number with the set E coinciding with κ . Hence, $\{x \in Y : \dot{T}_f(x) < \kappa\} \in J_{\mu}^+$. Thus \mathfrak{F} is $(J_{\mu}, \kappa, \kappa)$ -concentrated. \square

§4. Proof of Theorem

Assume to the contrary that $\lambda \le \kappa$ and let $J = \mathbb{K}_{\kappa}$ or $J = \mathbb{L}_{\kappa}$, depending on whether $P(\kappa)/I \cong \mathbb{B}_{\lambda}/\mathbb{K}_{\lambda}$ or $P(\kappa)/I \cong \mathbb{B}_{\lambda}/\mathbb{L}_{\lambda}$. By Proposition 11, there exist $\mu < \kappa$ and a

family $\mathfrak{F} \subseteq {}^{2^{\mu}}$ Ord such that $|\mathfrak{F}| > \kappa$ and \mathfrak{F} is J_{μ} -almost disjoint and $(J_{\mu}, \kappa, \kappa)$ -concentrated. By Corollary 6, $I \times J_{\mu} \subseteq (J_{\mu} \times I)^{T}$. Hence, by Proposition 9, we conclude that $|\mathfrak{F}| \le \kappa$; a contradiction.

One could try to improve Theorem in various directions. As noticed in [GS] one cannot conclude that $\lambda \geq 2^{\aleph_0}$.

PROBLEM. Under the assumptions of Theorem: Is it consistent that $\lambda < 2^{\kappa_0}$ and λ is a regular cardinal?

Added in proof. The referee remarks that the answer to this problem is: Yes. Let κ be measurable and $2^{\kappa^{+\omega}} > \kappa^{+\omega+1}$. Add $\kappa^{+\omega+1}$ Cohen or random reals.

REFERENCE

[GS] M. Gitik and S. Shelah, Forcings with ideals and simple forcing notions, Isr. J. Math. 68 (1989), 129-160.